

InvisibleFence: Non-Lethal Edge-Optimized AI for Human Wildlife Coexistence and Crop Protection

Snehalraj Chugh¹, Milind Rampure¹, Elijah Polyakov¹, Bipendra Basanyat¹ and Nirmalya Roy¹ ¹University of Maryland, Baltimore County, Baltimore, Maryland, USA

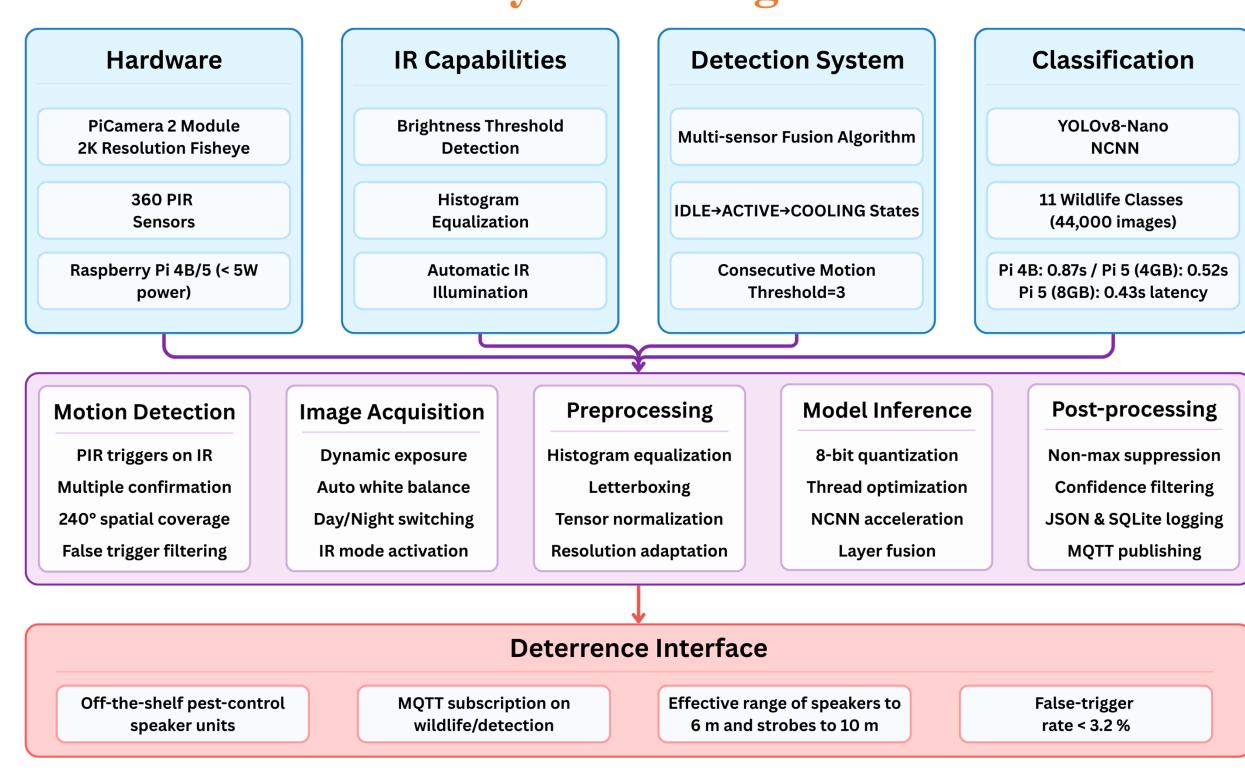
Motivation

Human-wildlife conflicts in residential and agricultural settings often rely on ineffective or ecologically harmful deterrents (e.g., rodenticides, fences, lethal traps), forcing gardeners and small-scale farmers to abandon crops, causing ecosystem damage, and plagued by high false-positive rates and habituation. InvisibleFence addresses these challenges via an edge-optimized framework for accurate wildlife detection and targeted, non-lethal deterrence.

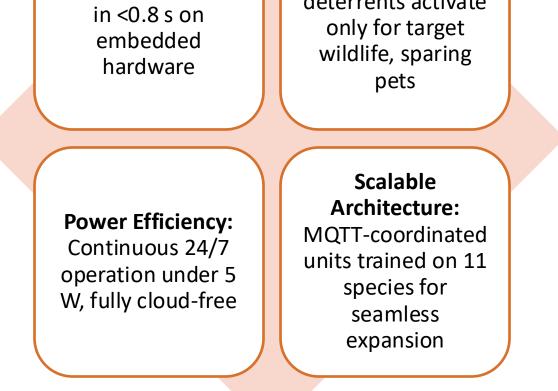
Research Objectives

Our objectives are to have an edge-optimized AI wildlife detection-and-fencing system that autonomously protects crops and homes with species-specific deterrence ensuring human and pets' safety.

Species-Specific Edge Intelligence: Response: Modular 2K video processed deterrents activate



System Design



Vision Pod and Deterrent Device

Motion

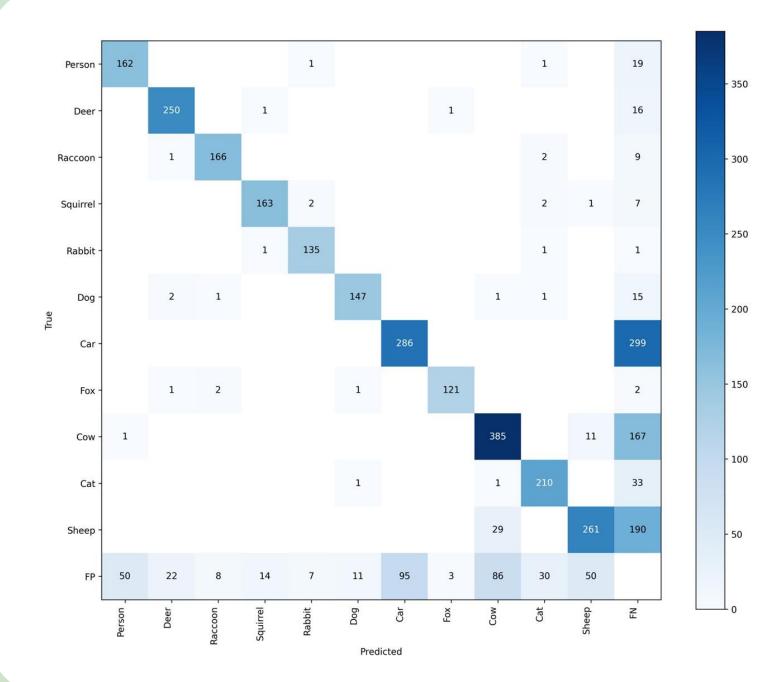
Sensor

- Enclosure & Sensors: 3D-printed water-resistant housing integrates a 240° tri-PIR array & IR illuminators for reliable day/night detection.
- High-Res IR Imaging: 2560×1440, 174° fisheye IR camera delivers wide-angle, clear coverage under all lighting conditions.

- **Smart Detection Pipeline:** Frame-hash motion detection triggers ACTIVE mode on scene changes, minimizing false positives.
- Adaptive Response System: Vision pod distinguishes animals from humans/pets across 240° and triggers Sound Pod's six-speaker array via MQTT with species-specific waveforms reducing habituation.

- **Comprehensive Coverage:** 44,000 real-world images spanning 11 wildlife species classes
- **Species Diversity:** Deer, fox, raccoon, rabbit, birds, squirrel, and other common garden intruders
- Condition Variety: Day/night captures with IR and standard illumination across all seasons
- Field-Collected Data: Images

sourced from actual farms and backyards for real-world relevance



Experiments & Results

Model Performance Excellence: YOLOv8-Nano NCNN yields 86.7 % mAP with an 11.7 MB footprint and 157.09 s inference for 1,765 images—five-times faster than YOLOv11.

Edge AI Processing: Raspberry Pi 5 runs YOLOv8-Nano NCNN locally with real-time letterboxing, normalization, and exposure calibration achieving 86.7% mAP in sub-second inference without cloud dependency

- Adaptive Safety Architecture: Real-time MQTT triggers deterrents for target species and suppresses responses when humans or pets enter, avoiding collateral impacts of non-selective systems.
- Intelligent Species Discrimination: Confusion matrix validates classification of eleven species—deer (0.87), raccoon (0.95), rabbit (0.90)

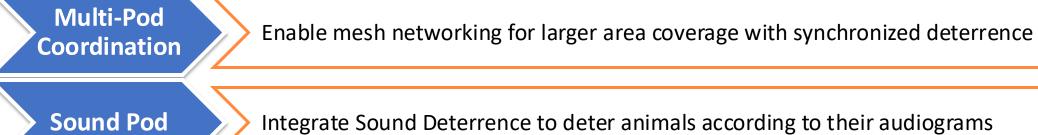
Model	Prec	Rec	F1	mAP	MB	Time (s)
YOLOv7-416	0.855	0.802	0.82	0.84	12.3	692.38
YOLOv7-640	0.856	0.811	0.83	0.855	12.3	699.52
YOLOv8-N NCNN	0.868	0.811	0.83	0.867	11.7	157.09
YOLOv11-S	0.889	0.804	0.87	0.893	19.2	1884.12
YOLOv11-S NCNN	0.889	0.804	0.87	0.893	36.1	325.37

Limitations and Future Directions	References		
Species Coverage Expand beyond current 11 classes to include more regional wildlife variants	 Rina Motoyama, Tadashi Okoshi, Jin Nakazawa, and Naohiro Isokawa.2024. <i>MeowSorter: Identifying Stray and Pet Cats</i> <i>Through Facial Features.</i> In Proceedings of the 22nd Annual 		
Weather Resilience Enhance detection accuracy in extreme weather conditions (heavy rain/fog)	 International Conference on Mobile Systems, Applications and Services. 594–595. Anne E Winters, Weili Chan, Andrew M White, Cedric P van 		

Acknowledgment

This work has been partially supported by NSF CAREER Award **#1750936**, NSF CNS EAGER Grant **#2233879**, NSF

Project



Integrate Sound Deterrence to deter animals according to their audiograms

den Berg, Mary J Garson, and Karen L Cheney. 2022. Weapons or deterrents? Nudibranch molluscs use distinct ecological

modes of chemical defense against predators. Journal of

Animal Ecology 91, 4 (2022), 831–844

Urban Nature Lab Dataset. *

https://urbanxnaturelab.com/urban-deer-study.html.

REU Site Grant **#2050999**,

NSF I-Corps Grant #

2502886, **UMBC FEAT** and

